ICTイノベーションフォーラム2011 2011.10.4, 於幕張メッセ国際会議場

数Tbit/inch²磁気記録密度実現のための オールホイスラー合金磁気抵抗素子の開発

東北大院工 大兼 幹彦

Introduction ~ハードディスクの記録密度の推移~

記録密度の向上には、ヘッドの高性能化が不可欠

Introduction ~次世代磁気ヘッドのターゲット~

低抵抗かつ高磁気抵抗比の磁気抵抗素子が必要

Introduction ~CPP-GMRの理論~

T. Valet & A. Fert model (Phys. Rev. B 48,10(1993))
CPP-GMRはbulkとinterfaceのスピンの非対称性に依存した現象

Introduction ~ハーフメタルホイスラー合金~

代表的なハーフメタルホイスラー合金

組成	キュリー温 度 (℃)	バンドギャッ プ (eV)	磁気モーメ ント (µ _B /f.u.)
NiMnSb	730	1.55	4.0
Co₂MnSi	985	0.7	5.0
Co₂MnGe	905	1.04	5.0

Introduction ~Co₂Fe_xMn_{1-x}Si ホイスラー合金~

Purpose

ハーフメタルホイスラー合金を用いた CPP-GMR素子において、室温で70%を 超える高磁気抵抗特性を得る

数Tbit/inch²磁気記録密度対応のハード ディスクヘッド応用に対する有用性を示す

Experimental method (CMS vs CFMS vs CFS)

Deposition :

UHV magnetron sputtering (ULVAC Inc.) *P* base $< 4 \times 10^{-8}$ **Micro-fabrication :**

Photo litho., EB litho., Ar ion milling, RIE

Characterization :

DC 4 probe method

Structural properties

Structural properties (STEM)

Bottom interface

Top interface

L2₁-ordering (even at interface) was confirmed

CMS : MR ratio = 31.6%, $RA = 40.3 \text{ m}\Omega \cdot \mu \text{m}^2$, $\Delta RA = 12.7 \text{ m}\Omega \cdot \mu \text{m}^2$ CFMS : MR ratio = 37.1%, $RA = 149.9 \text{ m}\Omega \cdot \mu \text{m}^2$, $\Delta RA = 55.6 \text{ m}\Omega \cdot \mu \text{m}^2$ CFS : MR ratio = 36.2%, $RA = 74.8 \text{ m}\Omega \cdot \mu \text{m}^2$, $\Delta RA = 27.1 \text{ m}\Omega \cdot \mu \text{m}^2$

Experimental method (Thickness dep. of CFMS)

Deposition :

UHV magnetron sputtering (ULVAC Inc.) *P* base $< 4 \times 10^{-8}$ **Micro-fabrication :**

Photo litho., EB litho., Ar ion milling, RIE

Characterization :

DC 4 probe method

Experimental result (Thickness dep. of CFMS)

 $\Delta RA = 55.8 \text{ m}\Omega \cdot \mu \text{m}^2$

 $\Delta RA = 128.1 \text{ m}\Omega \cdot \mu \text{m}^2$

上部のCFMSが3nmと10 nmの時、 最大で50%,74%と、非常に大きな磁気抵抗効果を観測した。 (3層構造のCPP-GMRでは現在、世界最大!!)

まとめ

 Co₂Fe_{0.4}Mn_{0.6}Siホイスラー合金を電極に用いた CPP-GMR素子において、室温で74%の磁気抵抗比を 達成した。(現在の世界最高値)

 開発したCPP-GMR素子は、1平方インチ当たり、5テラビット容量のハードディスクヘッドの性能ターゲットに 到達している。

今後、ホイスラー合金電極CPP-GMR素子が次世代磁気 ヘッドの主流として研究開発が進んでいくと考えられる