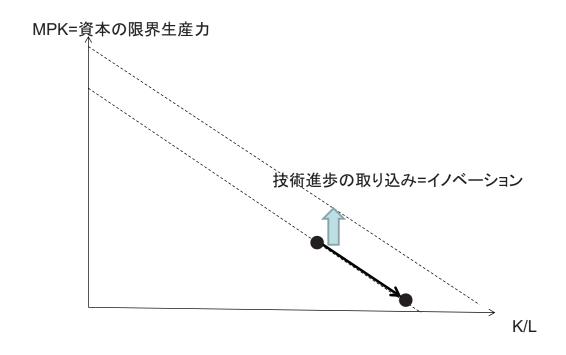
(参考4)

生産性向上とその源泉の把握

- 経済成長の源泉としての生産 性の向上
- 2. 生産性向上の源泉
- 3. 日本産業のイノベーション能力
- 4. 経済統計の今後の課題

ー橋大学 イノベーション研究センター教授 長岡貞男 2012年 7月

Sadao Nagaoka


1

1.経済成長の源泉としての生産性の向上

- ・ 生産性の向上とは、一定の資源を利用してより 大きな経済的な価値
- ・ 経済成長=投入資源の拡大+生産性の向上
 - -土地、天然資源、環境の供給量は有限
 - -資本ストック 収穫逓減、更新投資
 - -他方で、生産性の向上の主要な源泉である、 知識・技術ストックの拡大には限界が無い
- 持続的な成長の唯一の源泉は、生産性の向上

2

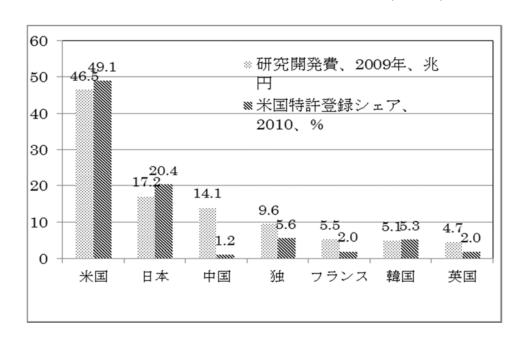
収穫逓減の克服

3

2.生産性向上の源泉

- ・イノベーション
 - 知識・技術を利用した企業内外の課題解決:
 - -プロセスイノベーション 同じ生産高に対して利用する生産要素の減少
 - -プロダクトイノベーション 新製品の効果、品質を調整した生産(y)の増加
- ・ 生産資源のより効率的な利用
 - -生産規模、雇用・資本投下の最適化。
 - -相対価格、競争環境の変化への効果的な対応。

生産性向上とイノベーションの源泉


- ・企業の技術革新力 研究開発能力 技術と市場を結びつける能力
- ・ 新企業の参入(技術スタートアップ)
- 競争
- イノベーション・インフラ 人材
 大学・国立研究機関の能力 知的財産制度 資本市場

5

3.日本産業のイノベーション能力

- 民間企業のイノベーション能力
 - 研究開発集約度 R&D/Sales≤(P-c)/P
- 研究開発分野
- 教育
- 産業組織 多様なガバナンスメカニズム
- ・成果のグローバルな展開ができるか

図1 研究開発支出における世界の上位7カ国(購買力平価、2009)と 米国における特許登録シェア(2010)

データ出典 : 研究開発費は科学技術要覧(2011年、文部科学省)、特許は米国特許庁

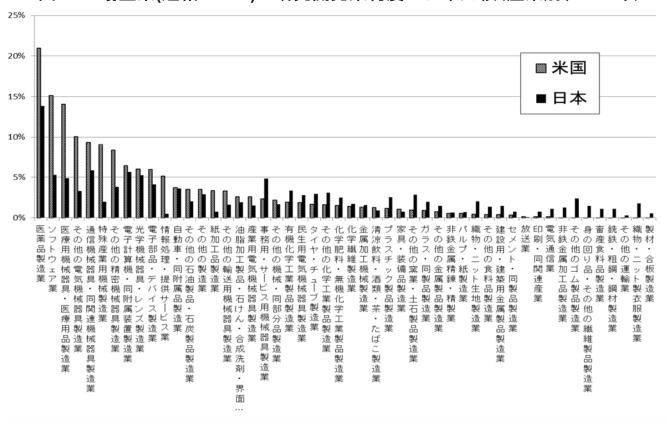

7

表1 世界の研究開発支出上位1000企業の各国分布(2009年、企業数の 多い上位20カ国)

	タ国人光のシュマ/タ団ケの人光記 /1000					
	各国企業のシェア(各国毎の企業計/1000					夕日小米
加五			社合計)	各国企業		
順位	尼 夕	♪₩₩	売上げシェ	研究開発投	士担体法	売上高研究開
111	国名	企業数	ア Not	資シェア	市場価値	発比率平均
		A Mic Met	Net	R&D		
	Country	企業数	Sales, %	Investment,%		R&D/Sales
	米国	339	25%	34%	37%	5%
2		199	20%	22%	11%	4.0%
3	ドイツ	75	10%	11%	5.3%	3.8%
4	フランス	50	7.8%	6.1%	5.6%	2.8%
5	英国	50	9.2%	4.4%	11%	1.7%
6	台湾	35	1.8%	1.3%	1.5%	2.7%
7	スイス	30	2.3%	4.5%	4.1%	7.1%
8	韓国	23	3.5%	2.6%	2.2%	2.7%
9	スウェーデン	18	1.3%	1.5%	1.4%	4.1%
10	オランダ	17	1.7%	2.3%	1.0%	4.8%
11	中国	16	4.0%	1.3%	3.8%	1.2%
12	イタリア	15	2.8%	1.5%	1.8%	1.9%
13	デンマーク	14	0.4%	0.8%	0.6%	6.5%
14	インド	12	0.5%	0.3%	1.1%	2.4%
15	スペイン	12	1.7%	0.7%	1.8%	1.4%
16	ベルギー	10	0.6%	0.5%	0.9%	2.9%
17	カナダ	10	0.6%	0.6%	0.5%	3.5%
18	オーストラリア	8	0.5%	0.5%	1.5%	3.8%
19	フィンランド	8	0.6%		0.4%	8.1%
20	アイルランド	7	0.4%	0.3%	0.5%	3.0%

データ出典: "The 2010 Industrial R&D Investment Scoreboard", European Commission® R&D Investmentのシェアは世界の研究開発費上位1000企業の研究開発費合計に占める割合

図2 上場企業(連結ベース)の研究開発集約度の日米比較(産業別、2006年)

金榮愨、長岡貞男「日米上場企業の連結ベースでの多角化データベースの構築と基本的な知見」 IIRワーキングペーパー、WP12-07

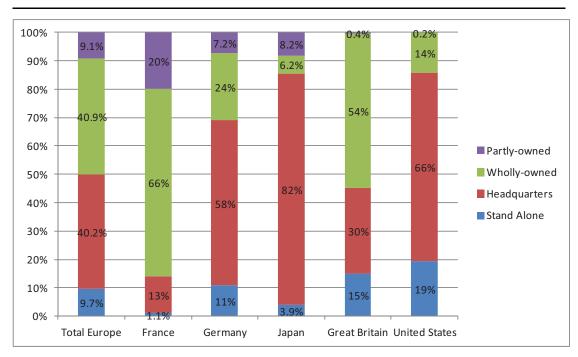
表2 サイエンスの重要性と日米からの出願の技術構造 (3極出願特許の技術分野別の分布)

	日本	米国
サイエンス依存度高い	21%	38%
サイエンス依存度中	48%	42%
サイエンス依存度低い	30%	20%

注 37の中分類での技術分類(米国特許分類のSub-Categoryを基本) 優先権主張年が2000年から2005年の3極出願構造

出典 長岡貞男、2011、「日米のイノベーション過程:日米発明者サーベイからの知見」、 『生産性とイノベーション・システム』(藤田 昌久・長岡 貞男 編著)、日本評論社

9


表3 日米の発明者のプロファイル(3極出願特許、技術分野の差を調整)

		日本	米国
サンプル数		3658	1919
学歴	大卒 (%)	87.6	93.6
子庭	博士 (%)	12.9	45.2
女性 (%)		1.7	5.2
年齢 (平均と	票準偏差)	39.5 (9.1)	47.2 (9.9)
	大企業 (500+ 従業者数)(%)	83.6	77.1
	中企業 (250-500)(%)	5	4.2
◇口 ◇ ◆	小企業 (100-250)(%)	3.1	3.3
組織	非常に小さい企業 (-100)(%)	4.7	12.1
	大学 (%)	2.5	2.3
	その他	1	1.0

長岡貞男、2011、「日米のイノベーション過程:日米発明者サーベイからの知見」、『生産性とイノベーション・システム』(藤田昌久・長岡 貞男 編著)、日本評論社

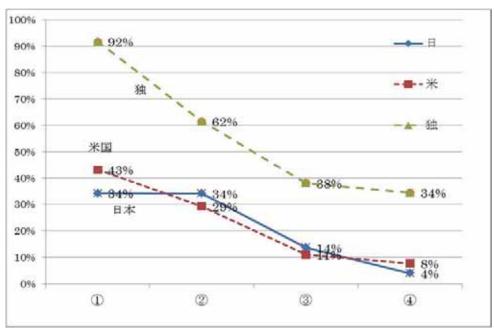

11

図3 保有特許件数で見た企業分布

出典: 長岡貞男、金榮愨、2012、「グループ内企業へのガバナンスの構造とパフォーマンス: セグメント、企業及びグループレベルでの分析」、TCERWP近刊

図4 日米独製造業の研究開発集約度の水準毎の輸出比率(%、2007年か2008年)

注:①「ハイテクノロジー製造業」、②「ミーディアムからハイテクノロジーの製造業」、③「ミーディアムからローテクノロジーの製造業」、④「ローテクノロジーの製造業」データ出典: OECD、STAN Database

13

4.経済統計の今後の課題(1)

- 1. 生産性の把握に向けた統計の充実
 - 価格の把握 パフォーマンス、品質の評価 ライフイノベーション サービス分野
 - 生産要素の把握 資本財、ソフトウエア、中間財
 - インプットとアウトプットの整合的な把握 連結ベースでの把握

14

経済統計の今後の課題(2)

- 2. 生産性向上の源泉の把握に向けた統計の充実
 - 業種のカバリッジ、企業規模のカバリッジ
 - 企業のグローバルな展開の把握
 - 人的資本などイノベーション・インフラ
 - パネルデータの整備、統計間の接続(統一企業 コード)
 - 回答率

参考)

- 基幹統計調查:企業活動基本調查、科学技術研究調查報告
- 一般統計調査:全国イノベーション調査、知的財産活動調査、 民間企業の研究活動に関する調査報告

15

参考 2011 BUSINESS R&D AND INNOVATION SURVEY, USA

Section 1: Company Information

company ownership, business(es), revenues, and innovation

Section 2: Financial Schedule A

Detail on domestic and worldwide R&D activity, Detail on domestic and worldwide sales , Capital expenditures for R&D (buildings, software, equipment) , Projected R&D expense

Section 3: Financial Schedule B

Funds for worldwide R&D activity as well as domestic activity, R&D funded by others

Section 4: Management and Strategy of R&D

Share of R&D, R&D partnerships

Section 5: Human Resources

R&D employee counts (headcount), Number of U.S. R&D employees working under a visa, R&D full-time equivalents

Section 6: Intellectual Property and Technology

Participation in activities that introduce new or improve existing goods, services, methods of manufacturing, distribution, or support systems, Patent-related data, Participation in specific technology-transfer activities