周波数共用特性試験

1. 試験項目

(1)特性試験項目

電界強度 パケット損失

(2)試験パラメータ

親機の高さ 地上高 45cm (子供の腰) 子機の高さ 地上高 45cm (台上)

2.試験環境

(1)試験場所・月日

他からの電波干渉等の少ない場所での試験を計画し、次の両日に実施した。 2006年10月11日、13日 金沢テクノパーク運動場

(2)試験機

クロスボー株式会社 Mote MICAz MPR2400J 2.4GHz
IEEE802.15.4 準拠、ZigBee®版 日本国内技適
試験機は、定格出力(1mW:0dBm)とし、1 秒ごとに情報(パケット)発信した。

(3) 測定器

電界強度:アンリツ MS2711B ハンドヘルドスペクトラムアナライザ < 仕様 >

周波数範囲:100kHz~3.0GHz

周波数スパン:100kHz~3GHz 及びゼロスパン

掃引時間: 6500ms フルスパン;510ms ゼロスパン

分解能帯域幅:10kHz/30kHz/100kHz/1MHz

ビデオ帯域幅:100Hz~300kHz(1-3シーケンス) 振幅測定範囲:+20dBm~表示平均ノイズレベル

表示平均ノイズレベル: -115dBm

(1MHz、プリアンプオン時代表値)

-95dBm

(500kHz、プリアンプオフ時代表値)

アンテナ: ELECTRO-METRICS 社 EM-6961 RIDGED GUIDE ANTENNA

アンテナ特性利得があるため、実測値から約7.75dBmの補正減を行った。

パケット数:試験機による通信状態をモニターソフトウエアである MoteView(クロスボー株式会社)により測定

(4)共用機器

電子レンジ

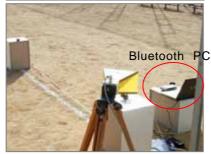
シャープ株式会社 RE-RZ1-S 1000W 2450MHz

Bluetooth

PC1:ソニー株式会社 VIO MODEL PCG-6L1N

PC2:ソニー株式会社 VIO type U VGN-UX90PS

無線 LAN


無線 LAN:株式会社アイ・オー・データ機器 WN-AGP/BBR 11CH 使用: 2462MHz

(IEEE802.11a/g/b 同時対応無線アクセスポイント付ブロードバンドルータ)

PC: ソニー株式会社 VIO type U VGN-UX90PS

3. 試験イメージ

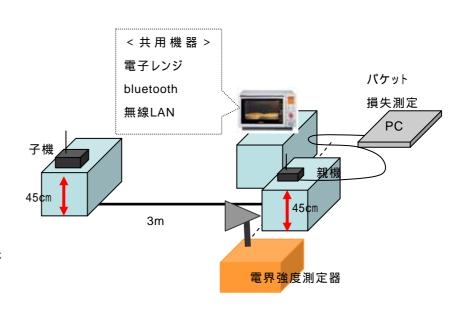


図1 周波数共用特性試験イメージ

4. 試験結果

(1)環境特性

試験環境における電界強度特性を図2に示す。これにより、試験環境での非試験帯域で他の電波の影響がないことを確認した。

dBm

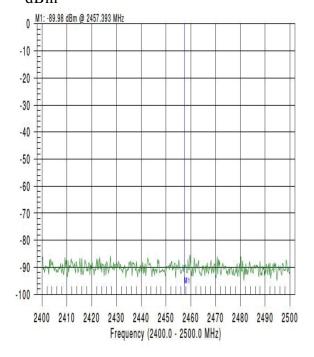
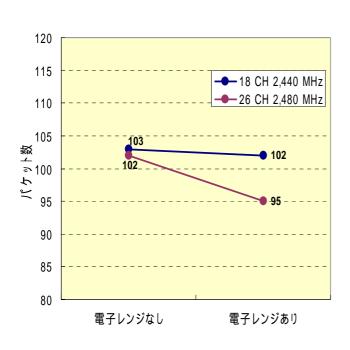


図2試験環境における電界強度特性


(2)電子レンジ共用試験

試験特性結果

電子レンジを普通に稼働(扉を閉めて加熱)し、本通信システム(18CH 2,240MHz、26CH 2,480MHz)にどのような影響が発生するかを試験した。その試験結果を、表 1、図 3~図 8 に示す。

表 1 電子レンジとの共用試験結果

試験機	周波数	電子レンジなし			電子レンジあり		
		開始時間	終了時間	パケット数	開始時間	終了時間	パケット数
18 CH	2,440 MHz	14:23:00	14:24:40	103	14:25:20	14:27:00	102
26 CH	2,480 MHz	14:13:00	14:14:40	102	14:16:00	14:17:40	95

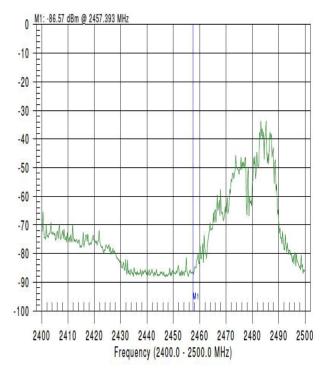


図3 電子レンジによるパケット損失特性

図 4 電子レンジのみの電界強度特性

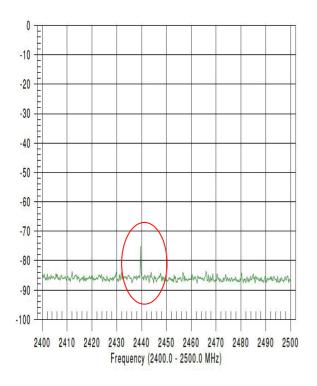


図 5 試験機 18CH (2,440MHz) 特性

図 6 試験機 18CH (2,440MHz) 電子レンジ特性

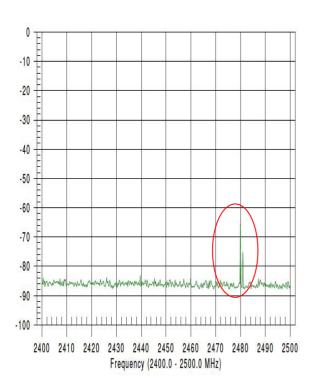


図 7 試験機 26CH (2,480MHz) 特性

図 8 試験機 26CH (2,480MHz) 電子レンジ特性

分析・評価

- (ア)試験機 18CH(2,440MHz)は、電子レンジの中心周波数(2,480MHz 付近)より約 40MHz 離れており、パケット損失は見られなかった。
- (1)試験機 26CH(2,480MHz)は、電子レンジの中心周波数(2,480MHz付近)と同帯域であり、パケット損失においては約7%の低下が見られた。

(3)Bluetooth との共用試験

試験結果

パソコン 2 台が、Bluetooth(2.4GHz)にてファイル転送中に、本通信システムにどのような影響が発生するかを試験した。その試験結果(2回実施)を、表 2、図 9~図 11 に示す。

Bluetoothなし Bluetoothあり 試験機 周波数 開始時間 | 終了時間 | パケット数 開始時間 終了時間 パケット数 18 CH 2,440 MHz (1回目) 14:23:00 14:24:40 103 14:37:00 14:38:40 108 18 CH 2,440 MHz (2回目) 14:23:00 14:24:40 103 14:40:20 14:42:00 105

表 2 Bluetooth との共用試験結果

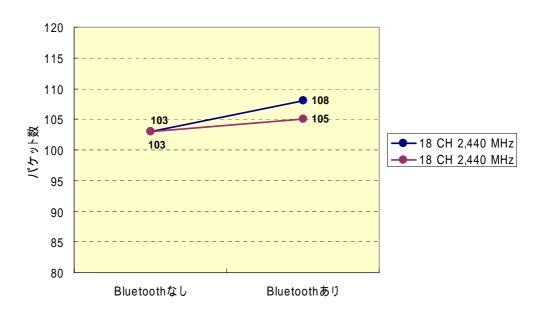
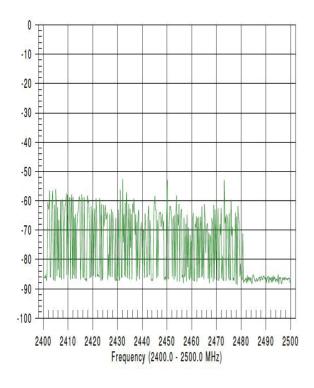



図9 Bluetoothによるパケット損失特性

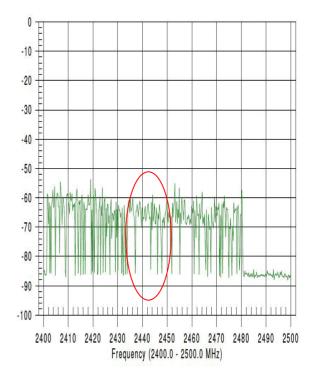


図 10 Bluetooth のみの特性

図 11 試験機 18CH (2,440MHz)

Bluetooth 特性

分析・評価

- (P)試験機 18CH (2,440MHz) は、 2 回試験を実施したが、どちらもパケット損失は見られず、通信上特段の支障はなかった。Bluetooth の通信にも特段の支障はなかった。
- (1)図 10 からBluetooth*の電界強度の特性は、周波数ホッピング機能**を表す 2,480MHz までの帯域全域で均一に現れている。しかし、試験機を稼働させると、図 11 のように、 2,440MHz (18CH) 周辺の周波数特性は変化し、試験機との競合を回避しているものと 考えられる。
- *:Bluetoothは、2,400MHz帯で動作し、周波数ホッピング機能**により、他の装置の周波数を検知しその周波数を回避し動作する機能を有している。
- **:周波数ホッピング機能は、ある一定の周期で搬送波の周波数を切り替えて(ホッピングして)通信を行う。送信側だけでなく、受信側もまったく同様に周波数(チャネル)を変更することで、正常な通信が行われる。Bluetoothでは、2.4GHz帯の広帯域(2402~2480MHz)の中に 1MHz ごと、79 個のチャネルを設定しており、1 秒間に 1600 回のチャネル切替を行いながら通信を行う。このことにより、干渉する周波数を発生する機器が周囲に存在していても、その影響を極力少なくすることができる。

(4)無線 LAN 共用試験

試験結果

パソコンと無線 LAN の接続状態で、本通信システムにどのような影響が発生するかを試

験するため、試験機の通信チャネルを無線 LAN の周波数 2,462MHz (11CH) に近い 2,460MHz (22CH) ~2,410MHz (12CH) まで、変化させてそのパケット損失、波形特性を測定した。その試験結果 (2回実施)を、表 3、図 12~図 20 に示す。

試験機	周波数	無線LANなし			無線LANあり		
		開始時間	終了時間	パケット数	開始時間	終了時間	パケット数
22 CH	2,460 MHz	16:09:20	16:11:00	102	16:05:20	16:07:00	87
21 CH	2,455 MHz	14:48:20	14:50:00	103	14:45:00	14:46:40	93
20 CH	2,450 MHz	15:45:00	15:46:40	103	15:42:00	15:43:40	105
15 CH	2,425 MHz	15:26:40	15:28:20	102	15:23:40	15:25:20	102
12 CH	2,410 MHz	15:32:00	15:33:40	102	15:35:40	15:37:20	102

表3 無線 LAN との共用試験結果

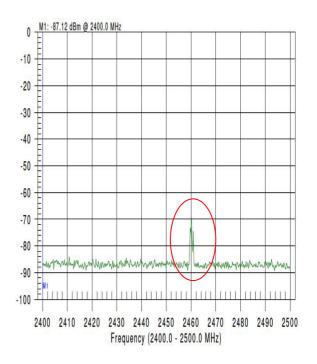
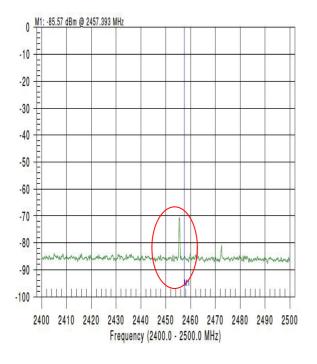



図 12 無線 LAN による共用試験

図 13 試験機 22CH (2,460MHz) 特性

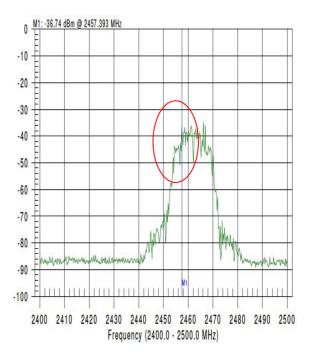
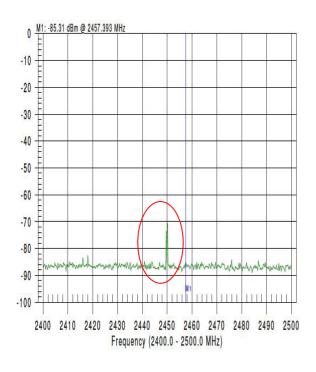



図 14 試験機 21CH (2,455MHz)特性

図 15 試験機 21CH (2,455MHz) 無線 LAN 11CH 特性

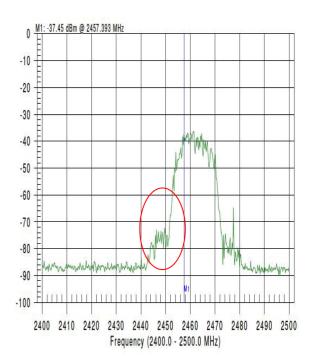
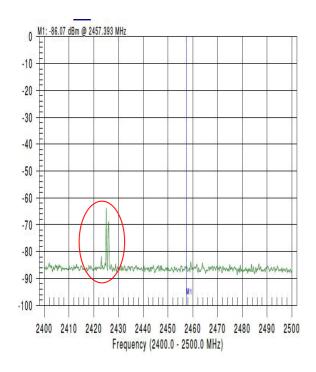



図 16 試験機 20CH (2,450MHz) 特性

図 17 試験機 20CH (2,450MHz) 無線 LAN 11CH 特性

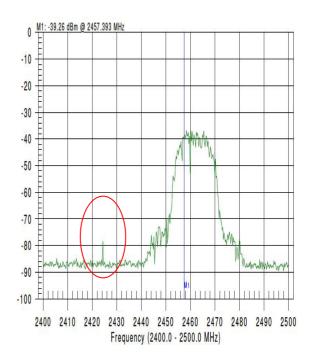


図 18 試験機 15CH (2,425MHz)特性

図 19 試験機 15CH (2,425MHz) 無線 LAN 11CH 特性

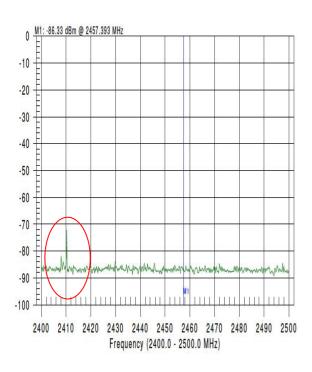


図 20 試験機 12CH (2,410MHz) 特性

分析・評価

(ア)無線 LAN と一番周波数帯の近い、2,460MHz(22CH)では、パケット数が 102 87 と約 15%低下した。2,455MHz(21CH)も、パケット数が 103 93と約 10%低下した。

しかし、無線 LAN には通信上特段の支障はなかった。

- (1)2,450MHz(20CH)~2,410MHz(12CH)においては、パケット数の変化はほとんど見られなかった。
- (ウ)電界強度の特性では、2,450MHz (20CH)が無線 LAN のバンド幅の裾の方に位置し、 多少重なりが見受けられるが、大きな影響を受けなかった。さらに 2,410MHz (12CH) まで周波数が低くなるにしたがって、無線 LAN のバンド幅からはずれたため、影響 を受けなかった。

5. 総合特性評価

以上の各共用試験から総合特性評価を検討すると以下のとおりである。

- (ア)電子レンジとの共用試験においては、電子レンジの中心周波数(2,480MHz 付近)と同帯域に試験機の周波数選択(CH選択)を行ったときは、その機器の特性にもよるが約10%程度のパケット損失が発生した。
- (イ) Bluetooth との共用試験においては、パケット損失は見られず、通信上特段の支障はなかった。
- (ウ) 無線 LAN との共用試験においては、無線 LAN の一番周波数帯の近い帯域に試験機の 周波数選択(CH選択)を行ったときは、その機器の特性にもよるが約 10~15%程度の パケット損失が発生した。
- (I)以上から、Bluetooth との共用は何ら問題なく使用できるが、電子レンジも無線 LAN もそれぞれの中心周波数に近い帯域で試験機が周波数選択(CH選択)を行うと多少影響を受けることから、それぞれの中心周波数から約 30MHz 帯域くらい離れた試験機の 周波数選択(CH選択)行うことにより、影響を回避することが可能である。