ICT無線端末機器の 消費電力関する一検討

独立行政法人情報通信研究機構新世代ネットワーク研究センター 川西哲也

概要

- ・ 各種無線機器の消費電力
 - Zigbee, Bluetooth, 802.11b/g/n, WirelessHD
- 大容量データのダウンロード
 - 長時間低速伝送VS短時間高速伝送
- 情報流と物流
 - 比較例: 航空貨物VS海底ケーブル
- 競争力のあるTHz無線実現に向けた課題

無線機器消費電力の例

消費電力:1.3W => 4.3nJ/bit

※インターフェース込み

製品名

外形サイズ(W×D×H)

無線規格

動作電圧

消費電流

伝送速度

IODATA WN-G300U

19mm×49mm×8mm

IEEE802.11b/g/n

5V

260mA max.

300Mbps max.

http://www.iodata.jp/product/network/adp/wn-g300u/spec.htm

消費電力:350mW => 170nJ/bit

※インターフェース込み

製品名

外形サイズ(W×D×H)

無線規格

動作電圧

消費電流

伝送速度

PLANEX BT-Micro3E2X

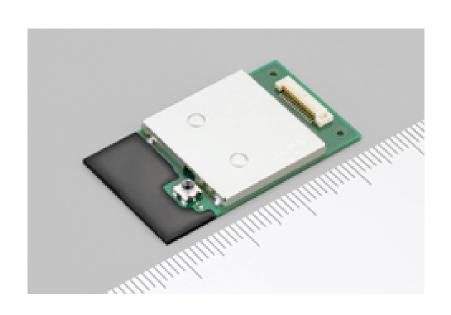
20mm×12mm×4.5mm

Bluetooth ver 3.0 + EDR

5V

70mA max.

2.1Mbps max.


http://www.planex.co.jp/product/bluetooth/bt-micro3e2x/spec.shtml

NICT Proprietary

低消費電力WiFi

http://www.alps.com/j/news_release/2010/0427_01.html

GainSpan社チップ「GS1011」

製品名

外形サイズ(W×D×H)

無線規格

1/0インターフェース

ホストインターフェース

周波数レンジ

動作電圧

消費電流

送信出力

伝送速度

セキュリティ

UGFZ1シリーズ

35.0mm×20.0mm×3.4mm

IEEE802.11b/g Compatible

ADC, I2C, PWM, GPIO

UART

2412 ~ 2484MHz

+2.8V ~ +3.6V

Tx:140mA、スタンバイ:5μA

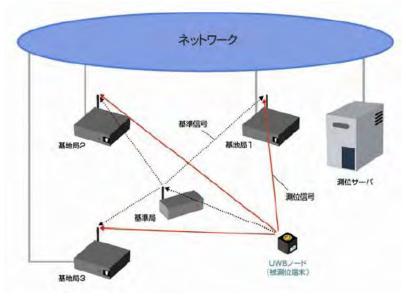
+9.0dBm typ.

11Mbps max.

WEP / WPA / WPA2 (TKIP / AES)

消費電力: 0.39-0.50W => 36-46nJ/bit

※インターフェース込み



低消費電力UWB無線

http://www.ubin.jp/press/pdf/UNL060704-02.pdf

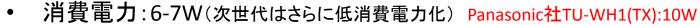
2006年7月4日YRP ユビキタス・ネットワーキング研究所 発表資料より

■超低消費電力

- 3nW/bpsの超低電力通信
- 微弱無線方式のDice(既開発)に比べ1000倍の高効率
- ボタン型電池で9年以上の電池寿命を達成 (5分に一度の間欠動作)

ワイヤレス機器の消費電力の例

http://www.ubin.jp/press/pdf/UNL060704-02.pdf


2006年7月4日YRP ユビキタス・ネットワーキング研究所 発表資料より

	Diceシリーズ		市販品の一例	
	Dice	UWB Dice	ZigBee	無線LAN
周波数帯	315MHz	4.1GHz (帯域幅1.4GHz)	2.4GHz	2.4GHz
通信速度	19.2kbps	250kbps~ 10Mbps	250kbps	11Mbps
消費電流	ピーク:24mA 待機時:2µA	ピーク:19mA 待機時:1µA	ピーク:48mA 待機時:2µA	600mA
ビットあたりの 消費電力 (nW/bps)	3,750nW/bps	3.2nW/bps	580nW/bps	180nW/bps
測位精度	(10m程度)	30cm	1.5m	1~5m

Si-Beamプライベートブース (CES2009)での デモンストレーション (送信側)

• 伝送速度: 4Gbps(双方向のときには半分に、複数の機器と接続可)

• **伝送距離:22m**(HD伝送可能距離)

• ミリ波デバイス: Si-CMOS、アンテナの裏にフリップチップボンディング

• アンテナ:64素子

消費電力: 2.5nJ/bit

NICT Proprietary

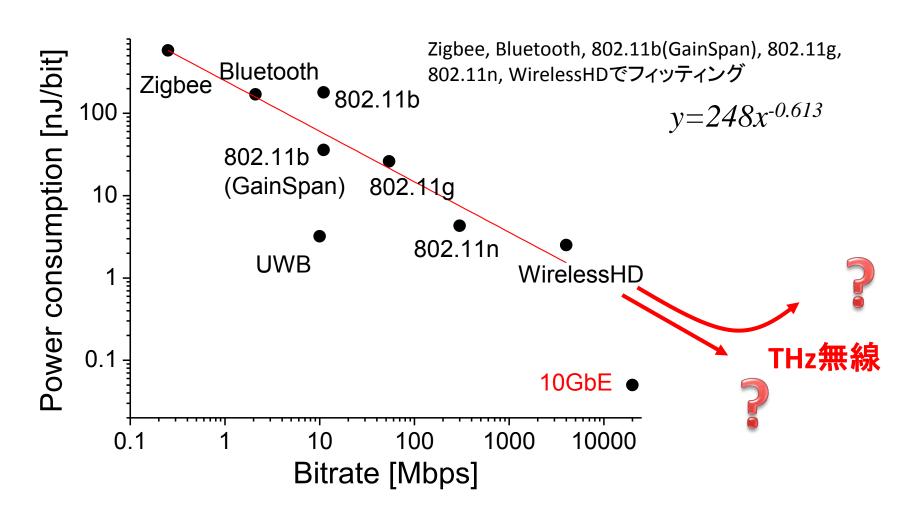
光伝送における 低消費電力化の取り組み例

http://www.sei.co.jp/newsletter/2007/05/4a.html

10GbE規格に準拠した SFP+光トランシーバ

▲光トランシーバの流れ

消費電力1ワット以下 1W/10Gbpsx2= 50pJ/bit


各機器の伝送速度とビットあたり消費電力

	MBit/s	nJ/Bit		
Zigbee (TYP)	0.25	580		
Bluetooth3.0+EDR (Planex)	2.1	170	製品	BT-Micro3E2X
802.11b (TYP)	11	180		
802.11b/g (iodata)	54	26	製品	WN-G54/CB3L
UWBDice	10	3.2	研究開発	
802.11b/g/n (iodata)	300	4.3	製品	WN-G300U
802.11b GainSpan (Alps)	11	36	評価用キット	UGFZ1
WirelessHD SiBeam (Panasonic)	4000	2.5	製品	TU-WH1
Optical transceiver 10GbE(SEI)	20000	0.05	製品	SPP5000

ミリ波帯通信が伝送速度、情報量あたりの消費電力の両面で 他の無線技術を圧倒している

各機器の伝送速度とビットあたり消費電力

NICT Proprietary

データを持ち歩くライフスタイル

大容量(ストレージ、伝送速度とも)携帯端末の普及で人の動きとデータの流れが絡み合う

移動途中・待機中に大量のデータをダウンロード?

→遅い伝送でOK

瞬間的に高速伝送でダウンロード?

→すぐ低消費電力モードに入ることができる

NICT Proprietary

データダウンロードに必要な電力

- PC動作に必要な電力:P0
- データサイズ:L
- 伝送速度:B
- 無線通信に必要な電力:Prf = K*BK: [J/Bit] ビットあたり消費エネルギー
- ダウンロードにかかる時間: T=L/B

必要な電力 Pa=T*(P0+Prf)

総電力 Pa = (P0+K*B)*L/B = L*(P0/B +K) = P0*T+K*L

データあたり電力 Pa/L = P0/B + K => K (B => infinity)

K:一定と仮定した場合伝送速度が速いほど有利

実際の傾向はKは伝送速度の減少関数なので、さらにメリット大

データダウンロードに必要な電力

- 1GB=8Gbitのダウンロードを想定
- PC消費電力(スリープモード消費電力は無視)
 - ThinkPadX200s(性能重視モード)
 - 約12W(無線OFF時:実測値)、約19W(無線ON時:実測値)
- 802.11g, 802.11n, WirelessHDで比較

	802.11g	802.11n	WirelessHD
所要時間	146秒	27秒	2秒
所要エネルギー(無線部分)	208J	34J	20J
所要エネルギー	1960J	358J	44J
エネルギー効率(11gを基準に)	1	4.5	45

最新の海底ケーブルの例 Unity(日米間)

- 容量: 10Gbpsx96WDMx5FP => 4.8Tbps (双方向)
- 総延長約9,620kmロサンゼルス(カリフォルニア)=千倉(千葉)
- 消費電力 +/-10kV, 1A => 20kW

(推定値※一般的な海底ケーブルの例)

- CO2排出
 - -480kWh => CO2 0.27t (0.555kg-CO2/kWh)

調査協力: KDDI研究所

航空貨物でデータを運ぶと・・・?

- 太平洋横断航路:通関・荷役を含めて所要24時間
- 搭載能力 最大積載重量 約94t 最大積載容積 約80m³
 - 密度 1.175を下回る場合に容積で制限される
- CO2排出量 350t
 - 成田-ロスの西行き、東行きの平均
- 伝送メディア: MicroSD
 - 1枚あたりの容量:32GB=256Gbit
 - 1枚あたりの重量:0.4g 密度2.42
- 94e6/0.4 = 2.35e8枚→ 60Ebit
- 24h=86400sec → 700Tbps
 包装のオーバーヘッド40% (/1.4)、双方向通信換算 /2

調査協力:電子航法研究所

海底ケーブルVS航空貨物

すべて推定値、概算値

	海底ケーブル	航空貨物	貨物/通信
伝送容量	約5Tbps	約250Tbps	約50倍
CO2排出	約0.3t	約350t	約1200倍
CO2/Tbps	0.06t	1.4t	約23倍
導入コスト		約150億円	
運用コスト		2000万円	

調査協力:KDDI研究所/電子航法研究所

まとめ

- 高速無線データ伝送における消費電力
 - ビットあたりエネルギー効率が高い
 - 通信時間を減らすことができる
 - 端末を低消費電力モードに切り替えることで更なる省電力化が可能
- 携帯端末の場合、モノとしての流れも重要
- 物流によるデータの流れ
 - 伝送速度としては高い性能を持つ
 - CO2排出が問題?
- ・ 今後の課題
 - THz帯高速無線でエネルギー効率の高さが維持できるか
 - 人・モノの流れとの連携(短距離無線では重要)
 - 使い勝手のいい低消費電力モード

各SD規格メモリーカードの比較

	SDカード	miniSDカード	microSDカード
幅	24mm	20mm	11mm
長さ	32mm	21.5mm	15mm
厚さ	2.1mm	1.4mm	1.0mm
体積	1,596mm³	589mm³	165mm³
重量	約2g	約1g	約0.4g
密度	1.25	1.70	2.42
動作電圧	2.7 - 3.6V	2.7 - 3.6V	2.7 - 3.6V

